
Supplementary Computational Methods - The GPfates model

1 Introduction

GPfates is based on a three-stage approach that
first i) infers a low-dimensional representation of
single-cell RNA-seq data, then ii) infers pseudo-
time to iii) model the temporal dynamics of gene
expression profiles with a mixture model. These
steps build on existing modeling components:
The Gaussian Process Latent Variable Model
(16), and the Overlapping Mixture of Gaussian
Processes (17). For a graphical illustration of the
major steps involved in this analysis, see Figure
2D of the main text (as well as Supp. Comp.
Fig 1). In Sections 2 and 3 we describe the sta-
tistical models that underlie the components of
GPfates. In Section 4 we describe downstream
analysis methods for interpreting the fitted model
followed by the integrated implementation and
combination with existing workflows in Section
5. Section 6 and 7 include additional validation
experiments using simulations, robustness analy-
ses and analyses on multiple existing data sets.
Finally, in Section 8, we compare the outcome
of other published methods inferring pseudotime
and branching events on the same data.

2 Pseudotime inference

2.1 Gaussian Process Regression

A main component of GPfates is to model tem-
poral transitions. We use the Gaussian process
(GP) framework, thereby casting this problem as
non-parametric regression. Let us begin by as-
suming that the developmental time t for each
cell we observe is known. Then, the output yg
(i.e. expression of gene g) is modelled as a contin-
uous function of the input t (i.e. developmental
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Sup. Comp. Fig. 1: Illustration of the anal-
ysis workflow. A low dimensional parametriza-
tion of the data is found using Bayesian GPLVM.
The low-dimensional representation is viewed as
a mixture problem, and solved by an Overlap-
ping Mixture of Gaussian Processes. This allows
us to represent our cells as members of different
smooth processes. But also interpret in terms of
the high-dimensional space parametrized by the
GPLVM.
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progression)
yg = f(t) + ε, (1)

where
p(ε) = N (0, σ2)

is Gaussian distributed residual noise and f(t)
denotes the unknown regression function. In this
work yg is considered to be an N -dimensional vec-
tor ofN cells with observed expression of the gene
g. We denote the expression of g in an individual
cell n as [yg]n.
A GP can be interpreted as a function-valued

prior on the elements of f , which is defined by a
covariance function that in turn is parametrized
by the input (developmental time) t:

cov(f(tn1), f(tn2)) = k(tn, tn2).

The covariance function k(tn1 , tn2) encodes prior
assumptions on the smoothness and lengthscales
of the function f(t). The most widely used covari-
ance function is the Squared Exponential (SE)
covariance function,

k(tn1 , tn2) = σ2
SE exp

(
−|tn1 − tn2|2

2l2SE

)
, (2)

and this is the covariance function we will gen-
erally be used in this work. This covariance
has the hyperparameters θ = (σ2

SE, l
2
SE), which

parametrize the amplitude ( σ2
SE) and the length-

scale (l2SE) of functions under the prior. Through-
out the remainder of the text we will omit the
hyperparameters from equations for the sake of
brevity. Note that there is a whole compendium
of valid covariance functions, which can also be
combined using sum or multiplication; see (50)
for an overview.
We write that a function f is Gaussian Process

distributed by

f(t) ∼ GP(0, k(tn1 , tn2)).

This prior on the function f can be linked to
the finite observed data using a Gaussian likeli-
hood:

p(yg|f) =
N∏

n=1

N ([yg]n|fn, σ2).

Together with the prior on the corresponding (fi-
nite) elements of f ,

p(f) = N (f |0,Kt),

this results in the marginal likelihood

p(yg|t) = N (yg|0,Kt + σ2 · I).

Here Kt is an N ×N matrix of pairwise evalua-
tions of the covariance functions at the observed
times t. I.e.

[Kt]n,m = k(tn, tm). (3)

By considering the joint distribution of the ob-
served data yg and an unseen function value f(t⋆),
it is possible to derive the predictive distribution
for f(t⋆):

p(f(t⋆)|t, yg, t⋆) = N
(
f(t⋆), k(t⋆)

)
,

where

f(t⋆) = k(t⋆, t)[Kt + σ2 · I]−1yg, and

k(t⋆) = k(t⋆, t⋆)− k(t⋆, t)[Kt + σ2 · I]−1k(t, t⋆).

For a full review on Gaussian Processes, see (50).
So far, we have only described Gaussian Pro-

cess Regression for expression yg of a single
gene g. If we consider a collection of G genes
{1, . . . , G}, their expression can be modelled to-
gether by

(y1, . . . , yG) = (f 1(t), . . . , fG(t))+(ε, . . . , ε). (4)

We use Y to compactly denote the N×G expres-
sion matrix of cells × genes, where

Yn,g = [yg]n.

The assumption that all genes are governed by
similar functional relationships with t means we
place the same GP prior (with shared covariance
function):

p(Y |t) =
G∏

g=1

p(yg|t) =
G∏

g=1

N (yg|0,Kt + σ2 · I).

(5)
In the next section we will see the usefulness of
considering multiple genes at once.

2



2.2 Pseudotime inference by
Bayesian GPLVM with per-
cell prior

The Gaussian Process regression framework de-
scribed above assumes we know the time t of each
cell. While many scRNAseq experiments record
data over some time course, these snapshots sam-
ple cells from a population where responses are
asynchronous. Each cell has reached a certain
stage in the differentiation process under inves-
tigation, which we do not observe directly. The
progress in to this process is referred to as pseu-
dotime. We can however infer this from the data.
In the Gaussian Process Latent Variable Model
(GPLVM) (16), we use the multiple output case
of Gaussian Process regression (equation 4), but
consider the values of t to be parameters which
we wish to infer.
The joint probability of the GPLVM is

p(Y, t) = p(Y |t)p(t),

where p(Y |t) is defined in equation 5, and the
prior p(t) is such that for cell n,

p(tn) = N (0, 1).

Following (52), we can also consider the prior
p(t) to be informed about the experimental or-
dering of collection times of the cells, putting the
mean of tn to correspond to the time point of
cell n. If we use our Malaria time course as and
example, we can put the prior on t so that

p(tn) = N (dayn, σ
2
prior),

where dayn ∈ {1, 2, 3, 4, 5} correspond to the col-
lection order of those cells. The parameter σ2

prior

alters the strength of the prior.
The objective of Bayesian GPLVM (51), is

to find the posterior probability distribution
p(t|Y ) ∝ p(Y |t)p(t). This is intractable though,
due to the t values appearing non-linearly in the
matrix inverse [Kt + σ2 · I]−1.
In (51), a lower bound to the marginal like-

lihood is calculated by estimating the posterior

p(t|Y ) by a variational distribution q(t). The dis-
tribution

q(t) =
N∏

n=1

N (tn|µn, Sn)

is described in that paper, and Bayesian training
of the model to maximize this lower bound. This
is the method we use.
For a simple and fast implementation of per -

cell priors, in practice we use a prior on the
variation parameters µn rather than the latent
tn. Rather than a lower bound of the marginal
likelihood the Bayesian GPLVM will optimize
the lower bound marginal maximum a posteriori
probability (MAP).

2.3 Dimensionality reduction

In many cases it is useful to work on a reduced
representation of cellular expression profiles. For
example, when modelling transcriptomic data,
fitting a model to a low-dimensional represen-
tation can be preferable to fitting it to expres-
sion profiles of thousands of genes. Formally,
the objective of dimensionality reductions is to
find some M -dimensional representation of the
G-dimensional expression measurements, where
M << G. Typically M is 2 or 3, which aides
visual interpretation. Analogous to the pseudo-
time inference, these latent cell states can also be
inferred using the GPLVM. Say X is an M × N
matrix so that each cell n correspond to an M -
dimensional vector,

Xn = (x1
n, . . . , x

M
n ).

We want to model the expression matrix Y so
that

[yg]n = f g(x1
n, . . . , x

M
n ) + ε = f g(Xn) + ε.

Note that now the covariance function is evalu-
ated as k(Xn1 , Xn2), where, in the Squared Ex-
ponential covariance function in equation 2, the
operator | · | is evaluated as the Euclidean norm
for vectors, rather than absolute value.
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Original OMGP application Bifurcating OMGP application

Sup. Comp. Fig. 2: Comparison of the original
OMGP use case (left) and our use case (right),
in both cases where the number of trends K = 2.
In the original use case trends are expected to be
independent throughout time, albeit with some
ambiguity in some locations. In our application,
we interpret ambiguous cell assignment to be in
a common precursor state.

Just as the tn values are inferred from data
above, so can the Xn vectors be inferred from
the data.

3 Bifurcation inference us-

ing overlapping mixtures

of Gaussian processes

In a continuous setting, a bifurcating process can
be seen as one function, splitting apart into two
functions over time. One approach to model this
could be to consider two functions throughout
time, but before the bifurcation happens, the two
functions are identical. With this in mind, we can
use a mixture model to tease apart the shared and
bifurcated functions.

3.1 Mixture model

Mixture models are hierarchical models where an
observation is assumed to be generated from one

of C components, each of which is described by its
own model. The goal of mixture models is to infer
which component an observation stems from, and
at the same time model that component.
The Overlapping Mixture of Gaussian Pro-

cesses (OMGP) model (17) assumes there are
C different underlying latent functions producing
the N observed cells. This model was originally
developed for the application of missile tracking,
and in that setting an observation is e.g. a radar
based location at a given real time point. As such,
the main focus of the definition of the model is
for the case of C completely independent com-
ponents. The approach presented here is based
on the realisation that the model would also be
able to handle the case of branching trajectories.
There would simply be a time interval where it
does not matter which mixture trajectory data is
sampled from. In our setting, an observation is a
single cell, and the analog to real time is pseudo-
time (Supp. Comp. Fig. 2). As an additional ex-
tension, we phrase a version of the OMGP model
which is non-parametric in the number of trajec-
tories.
In the original regression case described in

equation 1, data is assumed to be generated by
a single smooth unknown function. When mod-
eling our gene expression data with the Overlap-
ping Mixture of Gaussian Processes, data is con-
sidered to be generated by

X = fc(t) + ε.

However, we are lacking information about which
latent function fc generated any given observa-
tion (tn, Xn) of pseudotime and gene expression
for the N observed cells. Here X correspond to
some representation of the transcriptional state
of the cells. It could be the expression of all
genes (X = Y ), a single gene (X = yg), or an M -
dimensional inferred representation as discussed
above.
This is viewed as a mixture modelling problem,

where each cell has a latent variable zi specifying
to which component fc the cell should be allo-
cated to. Write F for the collection of all latent
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functions. The covariance functions kc for each
fc can be different from each other, though for
the applications we discuss here, we take them
as Squared Exponential covariance functions with
different hyperparameter values.
In the OMGP formulation, the likelihood is

p(X|F, T, Z) =
N∏

n=1

C∏
c=1

N (xi|fc(tn), σ2)znc .

We specify a multinomial prior on the latent vari-
ables Z, namely

p(Z) =
N∏

n=1

C∏
c=1

Πzn,c
n,c ,

C∑
c=1

Πn,c = 1.

Additionally, each of the latent functions fc has
an independent Gaussian process prior:

p(F |T ) =
C∏
c=1

N (fc|0,Kc
t ).

The covariance matrices K1
t , . . . ,K

C
t for the la-

tent functions f1, . . . , fC are generated from a co-
variance functions k1(tn1 , tn2), . . . , kC(tn1 , tn2) like
in equation 3.
Now we rephrase this as a Dirichlet Pro-

cess Gaussian Process mixture model (53). Let
every latent function fc have an associated
“stick-breaking length” vc, based on the “stick-
breaking” formulation of the Dirichlet Process.
Here V = [v1, · · · , v∞] is the collection of stick-
breaking lengths for constructing the Dirichlet
process for the assignment. The joint distribu-
tion of the OMGP model is

p(X,Z, V, F ) = p(F |T )p(X|F,Z)p(Z|V )p(V |α).

The value α is a parameter of the model which
controls the expected concentrations of mixtures
(which we in practice take as α = 1, a common
default), and

p(V |α) =
∞∏
c=1

Beta(vc|1, α),

where Beta(·, ·) is the beta distribution. The
prior distribution over the collection of Gaussian
Processes is

p(F |T ) =
∞∏
c=1

N (fc|0,Kc).

Following the stick-breaking formulation,

p(Z|V ) =
N∏
i=1

∞∏
c=1

πc(V )zi,c ,

where πc(V ) = vc
∏c−1

j=1(1− vj).
The assignments between observations X and

the latent functions F is given by a binary N×C
matrix Z. The assignments to latent functions
are considered as additional variational parame-
ters. Let ϕ be an N × C matrix where ϕnc is
the approximate posterior probability of assign-
ing the nth observation to the cth latent function.
The ϕ parameters are inferred by collapsed varia-
tional inference as described in (54). Overall, the
likelihood of the model is

p(X|F,Z) =
N∏

n=1

∞∏
c=1

N (xn|fc,Kc)
zn,c .

(It should be noted that everything described
generalizes to the case where the latent functions
fc are vector valued, as long as all output dimen-
sions of such a function share the same covariance
function. In this case, probabilities factorize over
output dimensions, but beyond that all calcula-
tions are the same.)

3.2 Parameter inference

In (17) the latent variables Z in the paramet-
ric version of OMGP were inferred using an
expectation-maximization scheme. Here we de-
scribe how we perform variational inference for
the ϕ-parameters in the non-parametric version
of the model.
To make the inference problem tractable, the

variational distribution q(Z) is introduced with
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variational parameters ϕ, at a given truncation
level C such that

q(Z) =
N∏

n=1

C∏
c=1

ϕzn,c
n,c .

with the objective of approximating p(Z|F,X, T ).
The lower bound of the log-likelihood of the

OMGP model, which we write as LKL, when ap-
proximating p(Z) by q(Z) can be split up in three
terms as

LKL = LM + LMP + LH.

Here LM =
∑C

c=1 LM
c is the log-likelihood of the

latent functions as represented by Gaussian pro-
cesses. For the cth latent function, the vari-
ational distribution of fc which maximizes the
lower bound was derived in (17) to be

q(fc) = N (fc|µc,Σc)

where Σc = (K−1
c + Bc)

−1, and µc = ΣcBcyc.
HereBc is a diagonal matrix with entries [Bc]i,i =
ϕi,c

σ2 . Thus the log-likelihood for a particular la-
tent function fc, assuming we have optimal as-
signments ϕ, is

LM
c = −1

2
yTΣ−1

c y − 1

2
ln |Σk| −

N

2
ln 2π.

The second and third parts of LKL were derived
in [Hensman2014] as

LMP = ln

∫
exp{Eq(Z) [ln p(Z|V )]}p(V )dV

= ln
C∏
c=1

(
Γ(ϕ̂c + 1)Γ(ϕ̃c + α)α

Γ(ϕ̂c + ϕ̃c + α + 1)

)

and
LH = −Eq(Z) [ln q(Z)] .

For optimizing variational mixture assignment
parameters we follow (54), and use natural gradi-
ent descent. For hyperparameters of the kernels,
as well as the variance parameter σ2 of the model,
we perform gradient descent.

If we know ∂LKL

∂ϕ
we can calculate the natural

gradient by equation (22) in (53). The gradients
∂LMP

∂ϕ
and ∂LH

∂ϕ
were derived in (53), the only un-

known part is ∂LM

∂ϕ
.

We then use the identity
∂LM

k

∂ϕn,i
=

1
2
Tr
(

∂LM
c

∂B−1
c

· ∂B−1
c

∂ϕn,i

)
. Here ∂LM

c

∂B−1
c

= ααT −

(Kc +B−1
c )−1, and the matrix ∂B−1

c

∂ϕn,i
will be zero

everywhere, except in the diagonal element (n, n)
where it will be −σ2

ϕ2
n,i
.

Using the chain rule, we can calculate log-
likelihood gradients of the model hyperparame-
ters for any covariance function, since we know
∂Kc

∂θ
, resulting in a very general and modular

framework. We only need ∂LKL

∂Kc
= ∂LM

c

∂B−1
c

= αcα
T
c −

(Kc + B−1
c )−1. In the case of the model variance

σ2 we have ∂LM

∂σ2 =
∑

k
1
2
Tr
(

∂LM
c

∂B−1
c

· ∂B−1
c

∂σ2

)
where

∂B−1
c

∂σ2 will be a diagonal matrix with 1
ϕi,c

on ele-

ment (i, i) for all i.

4 Downstream analysis

4.1 Ranking genes by bifurcation

Once the OMGP model has been fit, it can be
used to investigate individual genes in terms of
their bifurcating trajectory.

The log-likelihood of the OMGP model de-
pends on the covariance matrices Kt = {Kc

t , c =
1, . . . , C}, the variational mixture parameter ma-
trix ϕ, and the N observations (t,X). Let us as-
sume that we have mixture parameters ϕb which
have been found to distinguish a bifurcating trend
based on some X response variables. We can
now keep the fitted parameters and evaluate the
marginal likelihood of a model where the response
variables X are replaced by gene expression val-
ues yg. We call this new model Hbifurcating. We
wish to find genes which fit this bifurcating model
better than a model where there is no bifurcation.
To this end, we make a third model Hnot bifurcating

identical to the previous one, except we replace
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ϕb with ambiguous assignments ϕa. To asses
whether a given gene g is better described by the
bifurcating or the not bifurcating model, we eval-
uate the Bayes factor:

BFg = log p(yg|Hbifurcating)−log p(yg|Hnot bifurcating).

We refer to this ratio as the bifurcation statistic.

To estimate p-values, we used a permutation
approach where we perform the same analysis for
every gene g, except with permuted t values to
estimate a null distribution.

As a proxy for effect size of bifurcation, we con-
sider how well the expression values of a gene cor-
relate with the trend assignments to a latent func-
tion. Strong positive correlation will mean the
gene is particularly up-regulated in the cells un-
ambiguously belonging to the trend. Conversely,
a strong negative correlation indicates the gene
is down-regulated in the strongly assigned cells
compared to all cells.

4.2 Inferring the bifurcation time
point

It is possible to qualitatively appreciate from the
GP assignment probability (ϕc ) for each trajec-
tory (fc(t)) of the OMGP model, which cells are
ambiguous and which cells are exclusive to indi-
vidual GP’s. In the case of two trends, ambigu-
ous cells have assignment probability (ϕ) close to
0.5. A model where the data can be described
by two trends, but not by one, will have a higher
likelihood. Similarly, if only a region of the ϕ
parameters over time are replaced by ambiguous
cell assignment values, the new model will have a
lower likelihood.

For the sake of clarity, we make the assump-
tion that the OMGP will begin as ambiguous, and
then become less ambiguous over time, splitting
into two trends, in this special case. To inves-
tigate these cases, we pick a time-point tb in an
OMGP, then replace all ϕ values prior to tb with

0.5. We define this new ϕ as ϕ>tb :

[ϕ>tb ]i,c = 0.5 ti < tb

[ϕ>tb ]i,c = ϕi,k ti ≥ tb.

Now we can evaluate the model likelihood for this
particular tb and define

Ltb = LKL(ϕ>tb ,Kt, σ
2|X,T ).

This procedure is repeated for multiple ts over
the predictor variable of the OMGP model. In
our implementation, we consider 30 evenly spaced
bins by default, which has given enough resolu-
tion for the data investigated (though the number
of bins can easily be changed).
The likelihood has to decrease by definition.

However, after the bifurcation the decrease is
much more pronounced. We use a break-point
heuristic to detect this elbow, which is indicative
of the bifurcation time.
To identify the region at which the likelihood

decreases more rapidly, we fit a piece-wise linear
curve to the log-likelihoods, defined by

Ltb = k1 · t+ c1 t < tb

Ltb = k2 · t+ (k1 − k2) · p+ c1 t ≥ tb

This curve consists of two linear pieces, broken
up at the point p. When the curve is fitted, we
consider the break-point p to be the point after
which we can be confident that a bifurcation has
occurred, see Supp. Comp. Fig 3.

5 Limitations

The models we have described here are imple-
mented in the aim of describing a cellular tra-
jectory and decomposing parallel trends. Using
the Gaussian Process framework we can ask the
question we want while at the same time consider-
ing information we know about our experimental
data, such as collection time.
We have found this strategy powerful, but it is

not perfect, and there are man avenues for poten-
tial future improvement.
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Sup. Comp. Fig. 3: Inferring bifurcation point.
The plot illustrates how different points along the
pseudotime are sampled. Ambiguous assignment
probabilities replace trained assignment proba-
bilities in the observations earlier than the sam-
pled points. The breakpoint model identifies the
points where a decrease in likelihood differences
becomes more extreme.

A more biologically appropriate view of the
problem of cellular bifurcation would potentially
be a tree-based model, with an explicit branch
time encoded in the model. The computational
gain from the mixture model used here should not
be overlooked though, an explicit branch point
would require either sampling or global optimiza-
tion strategies for inference which is much slower
than gradient based optimization.

Throughout we are using regular Gaussian like-
lihoods for our models, though we empirically
know this is not completely appropriate. In par-
ticular due to the so called ”drop-out” problem
in scRNA-seq measurements, where there is an
inflation of zero-values at low to intermediate ex-
pression levels (55).

The likelihood is also limited in that we as-
sume expression values in the log TPM + 1 unit
have Gaussian noise in the absence of dropouts.
While this seem to empirically hold true, perhaps
a count based likelihood such as Poisson would be
more appropriate for scRNA-seq data?

With regards to the full method, we should
point out that here we are doing two steps of
inference. First we infer pseudotime, with uncer-
tainty. Then we treat the pseudotime as known
truth in the mixture model. This could be im-
proved by either propagating the uncertainty in
pseudotime in to the mixture model, or by set-
ting up a joint model which learns pseudotime
and mixture simultaneously. (An ”Overlapping
Mixture of GPLVMs” if you will).

When performing pseudotime inference, in this
work we are using priors on the variational pa-
rameters rather than the latent parameters the
variational distributions are estimating. A way
to improve the model would be to implement the
priors on the latent variables, and learn the vari-
ational posterior given these priors.
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6 Implementation and com-

bination with existing

workflows

6.1 Practical use of GPfates

The basis principle of GPfates is the combination
of pseudotime and mixture modelling.

Input to the GPLVM is an expression table
consisting of log scaled relative abundance val-
ues Transcripts Per Million, TPM, with a value
of 1 added to handle cases where expression is 0.
As relative abundance follow a log-normal distri-
bution, the Gaussian likelihood used for Gaussian
Process regression should be appropriate.

In practice, the pseudotime should represent
the biological process of interest. If this process is
clear, the expression data should be usable with-
out pre-processing. In single cell time course ex-
periments where the process of interest is less im-
mediate, a strategy highlighted in (19) is to select
the gene set used could be to rank the genes by
an ANOVA test over the time points, and select
a larger number of significant genes.

Similarly, the low-dimensional representation
of the transcriptomic cell state should represent
the biological response of interest. It can be ben-
eficial to select the parts of the representation
which correspond to this. For example, in the
analysis of CD4+ T cell time course, we use the
second GPLVM latent variable as a representa-
tion of T cell response, and model this factor by
the OMGP.

While pseudotime can be inferred directly from
the expression matrix Y , in many cases it helps
interpretation to perform an intermediate step of
dimensionality reduction. This process could also
be beneficial if the data has a very complex struc-
ture.

Another practical consideration is that single
cell expression values can be quite noisy. This
limits the time-scale at which we can expect to
measure proper functional differences in expres-
sion levels. Due to this, we tend to put lower

limits on the lengthscale lSE of the squared expo-
nential covariance function.

6.2 Integration of existing meth-
ods

We have presented use of the GPfates method
when pseudotime or low-dimensional representa-
tions have been based on the GPLVM. This is
because the OMGP follows from this framework,
and the statistical assumptions are consistent be-
tween the models.
In practice, other methods for inferring pseu-

dotime or low-dimensional representations could
also be considered. Here we briefly outline pos-
sible strategies for applications of GPfates down-
stream of popular single-cell analysis methods.
Recall that to perform the GPfates inference,

we need pseudotime t and some representation of
transcriptomic state X. These variables can be
set as the output from other methods.
In Monocle (19), the low-dimensional repre-

sentation X is found by independent component
analysis, and the pseudotime t for each cell is
defined by the path distance to a starting cell
through a minimum spanning tree in the coordi-
nates of X.
In Wanderlust (36), a heuristic is used to build

a stable k Nearest Neighbor (kNN) graph of the
data in the high-dimensional space of protein
measurements. The pseudotime t for a cell is then
defined as the average shortest path from a known
starting cell through the kNN graph. Note that
for CyTOF data, which Wanderlust is designed
for, only up to 40 analytes can be measured at
once, so it could be feasible to take X to be the
original expression matrix (Y in our notation).
Another dimensionality reduction technique

which have been used for single cell RNA seq
data is Diffusion Maps (56). Here X is a spec-
tral embedding of the data manifold, based on
the Laplace operator. It has been pointed out
that these embeddings preserve branching struc-
ture in the data. Taking the pseudotime t as the
Diffusion Pseudotime (21), a surprisingly effec-
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Sup. Comp. Fig. 4: OMGP is compatible with
e.g. Wanderlust and Monocle, as demonstrated
with a toy data set

tive approximation of geodesic distance over the
data manifold (from a known starting cell), based
on the diffusion map, GPfates modelling could be
used downstream to quantify the branching struc-
ture of the data.

We list alternative compatible pseudotime
methods in table 1.

As a demonstration, we generated a toy data
set with three branches, and extracted the pseu-
dotime using both the Monocle method and the
Wanderlust method. Then fitted and OMGP
with C = 3 on the output. The results can be
seen in Comp. Supp. Fig 4, which illustrates the
correct identification of the branching processes
for either input.

6.3 Software availability

We have made a software package for using the
GPfates method, which is available at https:

//github.com/Teichlab/GPfates. It provides
guidance and sensible defaults for the kind of
analysis we have described here. It makes
extensive use of the GPy1 package, and the
GPclust2 package, where we implemented the
non-parametric OMGP model.

1https://github.com/SheffieldML/GPy
2https://github.com/SheffieldML/GPclust

7 Assessment of GPfates on

simulated and real data

7.1 Sample-size robustness analy-
sis

Our full analysis consists of several indepen-
dent consecutive steps: first the GPfates method
where we are i) finding a low-dimensional repre-
sentation, ii) smoothing the data over a pseudo-
time, and iii) finding a trend mixture model. Af-
ter this we perform downstream analysis where
we are iv) dentifying the end states and bifurca-
tion.

How much data do we need to accurately recon-
struct trends from all four of the above steps, and
how much data is needed for individual steps? We
investigated both how stable the full procedure is,
as well as the individual steps, by re-running it
on sub-sampled datasets with fewer cells than the
entire dataset.

To measure the stability of the methods, we
consider absolute Pearson correlation of the pa-
rameters inferred for sub-sampled data relative to
the results obtained from performing the analysis
on the full data set.

We found that recovering a low-dimensional
representation is extremely stable with respect
to the number of cells (Supp. Comp. Fig. 5),
with almost perfect correlations between analysis
of the sub-sampled data and the original GPLVM
values. (For example, the lowest absolute Pear-
son correlation for a run with 50 cells was 0.96).
Similarly, the pseudotime inference is also very
stable to sub-sampling.

Finding the entire OMGP mixture model over
pseudotime requires a larger number of cells. We
do not see any higher degrees of consistency until
we reach 150 sub-sampled cells, with correlations
around 0.5. It is rare to see single cell studies with
so few cells, and in the study accompanying this
text we had many more cells (408). Identifying
only the end states is rather robust (but in many
cases might be best analyzed as a cluster problem

10
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Sup. Comp. Fig. 5: Robustness of analysis steps
by subsampling. Parameters inferred from a sub-
sample of the data are compared to parameters
inferred using the full data. The top panel indi-
cates this analysis for independent steps assum-
ing the previous step is known. The lower panel
shows the result when running the workflow from
start to end.

Latent Variable 0
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te

nt
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e 

2

BGPLVM (No Day 4)

Uninfected
Day 2
Day 3
Day 7

Sup. Comp. Fig. 6: Complete reanalysis of our
T-cell data excluding cells cellected at day 4. The
bifurcation point is identified as being between
Day 3 and Day 7, and is not forced in to either
of the days.

rather than a continuous value problem), where
we start seeing a correlation of 0.9 at 150 cells.

The individual steps were in general very stable
to sub-sampling, relative to the “gold standard”
of using the full data set. When running the en-
tire procedure, we see that smaller errors early
on in the analysis will propagate and affect later
steps.

7.2 Predicted bifurcation time is
not biased by collection times

We consider the risk that the identified bifurca-
tion point in the CD4+ T cell data potentially
just reflects the time points at which we have col-
lected data. We test the robustness of the predic-
tion of the bifurcation as having happened at Day
4 by re-running the analysis after removing cells
collected at Day 4. In this analysis we find that
the bifurcation happens at some point between
Day 3 and Day 7 where we do not have any ob-
served cells. The alternate hypothesis would have
been that the bifurcation would be found in ei-
ther Day 3 or Day 7. This provides confidence
both in the bifurcation point identification, and
more generally in the meaningfulness of the low-
dimensional GPLVM representation of the data
(Supp. Comp. Fig. 6).
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Sup. Comp. Fig. 7: Attempts detecting num-
ber of trends with OMGP. Simulated data with
expected numbers of trends where fitted with
OMGP, where the C cutoff was set to a range
of values.

7.3 Assessment of the ability to se-
lect the number of trends in
OMGP

In principle, the marginal log likelihood of the
OMGP model should let us select the C num-
ber of trends which optimally explain the data.
We investigated this by generating four synthetic
data sets with between 1 and 4 underlying trends.
For each of the data sets, we optimized OMGP
models with the number of trends C varying from
1 to 9 (three times per C value). We found
that the marginal likelihood of the models cor-
responded to the correct number of trends in the
cases of 3 and 4 ground truth trends, but not
for the 1-trend and 2-trend synthetic data. For 1
trend, the likelihood was lowest for a larger num-
ber of trends, and for 2 trends, the likelihood was
very similar for 2 and 3 trends. This suggests
that the OMGP may have a tendency to overes-

timate the number of trends if there is a single
progression. Supp. Comp. Fig. 7.

For our CD4+ T cell data, we found that the
marginal likelihood continuously increased with
the number C. We elected to keep the model
simple and made the assumption that we could
sufficiently explain the data with C = 2.

It is possible that the optimal likelihood for K
is not well defined when we have trends branching
off from a common trend. In the original appli-
cation of the OMGP model, the assumption is
that the trends will be completely independent
of each other. As we are already to some ex-
tent failing to fit two models in the ambiguous
case, this might cause the likelihood to reflect a
poor fit. For quantitatively determining the num-
ber of trends in the data, further work is needed,
probably with a model which explicitly considers
branching from a common original trend. The
marginal likelihood of the model is an indication,
but the choice of C should also reflect the biolog-
ical system under consideration.

7.4 Comparison of pseudotime in-
ference with and without pri-
ors

For the 1-dimensional Bayesian GPLVM which
we use to find the pseudotime of the data, we
put priors on the cells based on their known time
points. This is not strictly necessary, but helps
to enhance interpretability as there is intrinsic in-
variance to the inferred values. If we do not use
priors, qualitatively, the same trajectory is iden-
tified. Additionally, comparing the two versions
of pseudotime against each other, we see that
they correspond to a circular shift relative to each
other. The covariance matrices inferred using ei-
ther strategy have a very similar block structure
(Frobenius norm ... of difference) indicating that
neighbor relations are consistent. Supp. Comp.
Fig. 8.
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Sup. Comp. Fig. 8: Comparison of pseudotime
with and without per-cell priors. The upper left
shows the fit of the pseudotime predicted in to
the 2D GPLVM with and without priors. Below
are the corresponding inferred covariance matri-
ces. The right plot shows the relations between
the two versions of pseudotime, clearly indicating
that they have an approximate one-to-one map-
ping.

7.5 Pseudotime uncertainty

As pointed out in (57), we can use the poste-
rior distribution of pseudotime from the Bayesian
GPLVM to assess how meaningful the ordering is.
By investigating the confidence intervals of the
pseudotime for each cell compared to neighboring
cells, we see that the ordering is quite meaningful
(few cells overlap in confidence interval). (Supp.
Comp. Fig. 9)

We also investigated how the confidence of the
pseudotime depends on the number of cells ob-
served. As the number of observed cells increases,
the distribution of variance per cell decreases to-
wards zero. (Supp. Comp. Fig. 9)

7.6 Stability of the circular shape
of the GPLVM representation

We wanted to rule out the possibility that the
latent variable representations of data which ap-
pear circular might be artifacts due to random
noise, as suggested by (58). To make sure this
was not the case for our CD4+ T cell data, we
removed two ‘slices’ of cells from the circular

Sup. Comp. Fig. 9: Investigation of uncertainty
of inferred pseudotimes. Left panel, since the
Bayesian GPLVM fits the variance of the pseu-
dotime for each cell, we can compare the assign-
ments with each other. The bars correspond to
95% confidence intervals. On the right panel we
see how the lengths of the confidence intervals
globally decrease as the number of cells used in-
creases.

2D GPLVM pattern. Following this, we fitted
a new GPLVM with this reduced data set. Af-
ter optimizing the GPLVM, a representation was
found which was again missing the same slices,
Supp. Comp. Fig. 10A. This control experiment
strongly suggests that the GPLVM learns the ac-
tual topology of the data.

7.7 Assessing the accuracy of im-
puting virtual cells

Unlike many other dimensionality reduction tech-
niques, the GPLVM creates a model which maps
into the high dimensional observed space. It is,
however, not clear how meaningful this represen-
tation is. We assessed this by taking the “slice-
less” model described above, and in the empty
areas corresponding to the removed cells, predict-
ing “virtual cells” (Supp. Comp. Fig 10A). Using
an independent clustering technique, t-SNE (59),
on both the left out slices of cells and the pre-
dicted virtual cells, we find that single cell tran-
scriptomes predicted from a given slice coincide
with the real cells from the corresponding slice
(Supp. Comp. Fig. 10). This indicates that
GPLVM prediction in to high-dimensional spaces
is not simply producing overfitted results.
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Sup. Comp. Fig. 10: Stability of GPLVM repre-
sentation, and prediction through GPLVM. Top
row: Predicting cells from regions of higher sim-
ilarity with left out real cells from corresponding
regions than non-corresponding regions. Bottom
row: Predicting cells from unobserved regions
potentially identifies antagonizing gene combina-
tions.

Following from this, we investigated the ”hole”
in our CD4+ T cell data. We create a number of
virtual cells from the hole region and compare
which genes would be expressed in these cells
compared to genes expressed in all cells (Supp.
Comp. Fig. 10C). The underlying reasons for
data being non-linear is that particular combi-
nations of gene expression patterns do not occur
together. If we find genes which are highly ex-
pressed in the virtual cells but are not observed at
the same time in actual cells, this might indicate
that they are incompatible with each other. This
might be a good complementary tool for generat-
ing hypotheses about regulation. For instance, we
identified the genes Hspe1 and Gm29216 which
would be co-expressed in the hole, but are gen-
erally not co-expressed in observed cells (Supp.
Comp. Fig. 10D).

8 Validating the BGPLVM

and OMGP approach by

application to other data

sets

In order to further corroborate our analysis ap-
proach, we considered two recently published sin-
gle cell data sets produced to investigate pro-
gression of single cells in two developmental con-
texts: mouse fetal lung and human fetal primor-
dial germ cells. In addition to that, we analyzed
a third RNA-seq study that examines the devel-
opment of frog embryos in a high temporal reso-
lution.

8.1 Analysis of lung development
data

We downloaded the data from (23) and quanti-
fied the expression using Salmon. To smooth the
data over pseudotime, we found genes that vary
over the a priori known time points by a likeli-
hood ratio test of an ANOVA model of the time

14



points. The expression values for the top varying
genes were run on a GPLVM. One of the factors of
the optimized GPLVM was used as pseudotime,
and the top two factors of the GPLVM were used
to represent the entire data set. An OMGP was
then optimized on this low-dimensional represen-
tation to identify the two trends corresponding to
the AT1 and AT2 lung cell lineages without prior
annotation. The bifurcation statistic for all ex-
pressed genes in these cells reconstituted many of
the genes identified in a largely manual manner
by (23).

8.2 Analysis of human primordial
germ cell data

The data from (24) was downloaded and quan-
tified with Salmon as with the other data, but
with an index based on the human transcrip-
tome: Ensembl 78 annotationa of GRCh38, to-
gether with ERCC sequences and human spe-
cific repeats from RepBase. To smooth the time
course data, we used a likelihood ratio test to find
the top genes which were described linearly along
the time points in the data. The expression of
these genes were then used to fit a GPLVM. This
low-dimensional representation of the data was
then used to fit an OMGP, taking one of the la-
tent factors as pseudotime.
In this data set, the ground truth about the sex

of the cells is known, and thus we could have used
a supervised approach such as GPTwoSample (60)
or DETime (61). Interestingly, the OMGP model
identifies the split between male and female cells
in an unsupervised fashion.
We applied the bifurcation statistic test to

identify genes that follow the male and female
development differently.
Unlike in the case of the lung development

data, the majority of the genes we identify are
not discussed in the original study. In the origi-
nal study, the authors focused on genes specific to
given conditions (e.g. Male PGC’s from week 11
compared to all other cells). In our analysis, we
consider the dynamics of gene expression over de-

velopment. We find that in the male branch, the
GAGE family is highly upregulated over devel-
opment. Additionally we find the Y-linked gene
ENSG00000279950. Also among the top male
hits is RHOXF2, a gene linked to male reproduc-
tion (62). Further down the list we also interest-
ingly find PIWIL4, a gene with function in devel-
opment and maintenance of germline stem cells
(63). On the female side, the top hit is MDK,
a gene involved with fetal adrenal gland develop-
ment (by similariry: UniProtKB P21741). Other
top hits include MEIOB, a meiosis related gene,
and the satellite repeat GSATII. Surprisingly, we
also see upregulation of SPATA22, a gene associ-
ated with spermatogenesis.

8.3 Analysis of frog development
data

As a form of negative control, we subjected the
data from (64) to our bifurcating analysis. This
is data from a high resolution time course of de-
veloping frog embryos. RNA-sequencing is done
using material from the entire embryo, so no bi-
ological bifurcation should occur during the de-
velopment. It should be noted that frog embryos
have much more RNA than single cells, so the
data is less noisy than single-cell RNA-seq sam-
ples.
Expression was quantified with Salmon, and

the expression table was read in with ERCC’s
removed. All expressed genes were used to find
a low-dimensional representation, and a pseudo-
time was found using 8,000 genes which were lin-
early differentially expressed over the time course.
The pseudotime corresponded extremely well

with the real time point ordering. And in this
data set, almost all expression variability can be
explained by the time course. Still we trained
the OMGP model on the 2D Bayesian GPLVM
representation of the data.
No strong bifurcation is detected, and thus we

skipped gene bifurcation analysis. The single-
trend model explains the data well. Some het-
erogeneity can be seen in the early part of the
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Sup. Comp. Fig. 11: Summary of GPfates result of Treutlein et al developing lung data.
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Sup. Comp. Fig. 12: Summary of GPfates result of Guo et al developing primordial germ cell data.

Sup. Comp. Fig. 13: Summary of GPfates result of Owens et al developing frog embryo data.
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time course. This might suggest that expression
is somewhat noisy in extremely early embryos,
but not in a way that indicates discrete cell pop-
ulations.

9 Comparison to other

pseudotime and bifur-

cation methods

We compared GPfates with various methods in-
ferring pseudotime and bifurcation events: Wish-
bone (22), Monocle2 3, Diffusion Pseudotime
(21), SCUBA (18) and Mpath (20). We applied
the methods to our data and different public de-
velopmental data sets mentioned earlier. Please
note, the developmental embryonic frog data was
treated as a negative control to investigate if
methods are able to detect false positives, i.e.
identifying branches when they do not exit.
The results are summarized in Supp. Comp.

Fig. 13 through 13. In order to validate the ap-
proaches, we counted the number of bifurcation
events for each method in each data set and com-
pared it to the expected number of bifurcations
(Table 2).
Furthermore, we assessed the accuracy of a

method by calculating Spearman’s rank corre-
lation between the inferred pseudotime and the
real time in a given data set (Supp. Comp. Fig
14). For this analysis only Wishbone, Monocle2
and DPT could be considered as the SCUBA and
Mpath tools do not report an inferred pseudotime
which can be parsed.
Monocle2 and GPLVM perform similarly with

a high accuracy (> abs(0.80) Spearman’s correla-
tion) on public data. However, Monocle2 as well
as Wishbone and DPT failed to assign the cor-
rect temporal order with regard to the malaria
infection data. Overall, applying Wishbone and
DPT to the data sets they achieved poor to mod-
erate accuracy, except for Wishbone performing

3http://cole-trapnell-lab.github.io/monocle-
release/articles/v2.0.0/

well on the frog data, and DPT performing well
on developmental lung data.
Concerning the bifurcation event in develop-

ing lung data, most of the methods cluster AT2
and E18.5 cells into one branch which has been
confirmed in a previous study (23). However,
in primordial germ cell data none of the pub-
lished methods were able to detect branching
events between male and female cells. With re-
gard to the frog embryonic development study
only SCUBA reflects the non-branching structure
of the data. All other public methods report a
branching point.

9.1 Preprocessing public RNA-seq
data

We removed ERCCs from our expression data ta-
ble and re-scaled the expression values to TPM.
Furthermore, we eliminate cells containing NA’s
in the frog data.
Some of the used methods require a

start or root cell. Therefore, We ran-
domly picked a cell from an early collection
time point: 1771-026-187-E6 (malaria),
SRP033209 E14.5 rep 1 cell 24 (lung),
2013600 (pgc) and 1795679 (frog).

9.1.1 Wishbone

The analysis with Wishbone version 0.4.1 was
performed according to the tutorial using default
or suggested parameters (22). We ran t-SNE
with n components = 5 and perplexity = 30.
To run wishbone the start cells were chosen as
stated above with k=15 or k=50 for frog data,
components list=[1,2] and num waypoints =

150.

9.1.2 Monocle

The Monocle analysis was performed with version
2.1.0 of the Monocle package, following the steps
outlined in the original vignette (19). In brief, the
analysis was performed using the size normalized
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data (TPM) including all genes expressed in ≥
50 cells with default parameters. The genes used
for the ordering of cells were defined by carry-
ing out a differential expression analysis of the
time points using the differentialGeneTest in
the Monocle package. Following the original vi-
gnette, genes with q-value < 0.01 were selected.
To reduce the dimension the max components op-
tion was set to 2 and the DDRTree methods was
used.

9.1.3 Diffusion Pseudotime (DPT)

DPT analysis was done using the R package
version 0.6.0 and an additional package called
destiny (version 1.3.4) (21). In order to calcu-
late the transition matrix DPT uses a Gaussian
kernel with parameter sigma. The optimal sigma
was chosen by using the function find.sigmas()

of the destiny package. Given the transition
matrix and root cell dpt() was executed with
branching=TRUE.

9.1.4 SCUBA

In order to run SCUBA we used the python
package PySCUBA version 0.1.14 which provides
a graphical user interface (18). Selecting the
RNA-seq data set including temporal information
we ran SCUBA with cluster mode = PCA2 and
pseudotime mode = 0.

9.1.5 Mpath

We performed analyses with Mpath using the
package version 1.0 (20). Prior to the analy-
sis, a quality check includes a removal of genes
having TPM values < 1 in more than 95 per-
cent of cells in each group. In order to find
the number of optimal clusters the parameters
diversity cut and size cut were set as sug-
gested to 0.6 and 0.05, respectively, when call-
ing the function landmark designation(). In-
specting the resulting plots, the number of op-

4https://github.com/GGiecold/PySCUBA

timal clusters were chosen as 10 (malaria), 19
(lung) and 24 (pgc). Mpath failed to run on
the frog data set. Using the landmark clusters
we constructed the weighted neighborhood graph
and trimmed it using the minimal spanning tree
method.

10 Discussion

We have demonstrated the applicability of our
GPfates method, where we use latent variable
modeling to infer temporal expression dynam-
ics, and Gaussian process mixture modeling for
identifying diverging global trends. The method
has been investigated in terms of robustness, and
applied on several simulated and real data sets
showing good results.
Of course there is no silver bullet for these sorts

of problems, and it would not be surprising if
other methods than the ones we have used work
better for some biological systems. Nevertheless,
we have illustrated that the main component, the
Gaussian process mixture modeling, is compati-
ble with other methods in these cases.
A benefit from the methods we use is that di-

agnostics such as marginal likelihood can be used
to aide the user with regards to the models to
use. Still, the user will need to keep the biologi-
cal system in mind, and be critical of results.
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Pseudotime Method Strategy OMGP Compatibility

Wishbone Diffusion maps on reduced k-NN Yes
(22) graph (using waypoints)

Monocle2 Pseudotime Minimum Spanning Tree path length Yes
(19) in 2D DDRTree space

Diffusion maps Spectral embedding of data manifold With postprocessing, e.g. DPT
(56) (21)

Wanderlust Heuristic k-NN graph geodesic distance Yes
(36)

GPLVM Latent data parametrization Yes

Dim. Clus- Diff. Expr.
Bifurcation Method Strategy Reduction tering Analysis

Wishbone Disagreements between shortest paths Yes No No
(22)

Monocle2 states Create k PQ trees from a Minimum Yes No Yes
(19) Spanning Tree

DPT Switch in correlation behavior No No No
(21)

SCUBA Transitions between clusters in pseudo- Yes Yes No
(18) time bins

Mpath Finding Minimum Spanning Tree in Yes Yes Yes
(20) neighborhood graph of landmarks

OMGP Model data as mixture of continuous Yes No No
processes

Table 1: Examples of common pseudotime- and bifurcation methods.
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Sup. Comp. Fig. 13: Output of bifurcation methods applied to malaria data. (A) Wishbone results
showing the branching structure colored by time points (left) and inferred branches (right). (B) Mini-
mum spanning tree on cells generated by Monocle2. Cells are colored by time points (left) and inferred
cell states (right). (C) Visualisation of diffusion maps in DPT colored by time points (left) and inferred
branches (right). (D) Lineage tree by SCUBA reports no bifurcation. Sizes of bubbles are according to
number of cells. (E) MPath’s minimum spanning tree: First number corresponds to the collection time,
second number corresponds to the landmark cluster. (F) GPfates trajectory, colored by time points.

Malaria Lung PGC Frog
this work (23) (24) (64)

Wishbone 1 (1) 1 (1) 1 (1) 1 (0)
Monocle2 7 (1) 1 (1) 2 (1) 1 (0)
DPT 1 (1) 0 (1) 1 (1) 1 (0)
SCUBA 0 (1) 0 (1) 0 (1) 0 (0)
Mpath 1 (1) 2 (1) 1 (1) NA (0)

Table 2: Number of detected (and expected) bifurcations of other methods.
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Sup. Comp. Fig. 13: Output of bifurcation methods applied to lung data (23). AT2 and E18.5 cells are
expected to occur in one branch. (A) Wishbone’s branching structure. Cells are colored by time points
(left) and inferred branches (right). (B) Minimum spanning tree generated by Monocle2. Cells are
colored by time points (left) and inferred cell states (right). (C) Visualization of diffusion maps in DPT
colored by time points (left) and inferred branches (right). (D) Lineage tree by SCUBA: Sizes of bubbles
are according to number of cells. (E) MPath’s minimum spanning tree: First number corresponds to
the collection time, second number corresponds to the landmark cluster. (F) GPfates trajectory, colored
by time points.
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Sup. Comp. Fig. 13: Output of bifurcation methods applied to primordial germ cell data (24). Bifur-
cation event is expected to split female and male cells. (A) Wishbone results colored by time points
(left), sex (middle) and inferred branches (right). (B) Monocle2 results colored by time points (left),
sex (middle) and inferred cell states (right). (C) DPT results colored by time points (left), sex (middle)
and inferred branches (right). (D) SCUBA result: Sizes of bubbles are according to number of cells.
(E) MPath result: First number corresponds to the collection time, second number corresponds to the
landmark cluster. (F) GPfates trajectory, colored by time points. (□) corresponds to male, (▽) to
female cells.
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Sup. Comp. Fig. 13: Output of bifurcation methods applied to developing frog data (64). Treated
as a negative control, no branching events should be reported. Please note, Mpath failed to model
on developmental frog data. (A) Wishbone results colored by time points (left) and inferred branches
(right). (B) Monocle2 results colored by time points (left) and inferred cell states (right). (C) DPT
results colored by time points (left) and inferred branches (right). (D) SCUBA result: Sizes of bubbles
are according to number of cells. (E) GPfates trajectory, colored by time points.
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Lung (Treutlein et. al., 2016)
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Sup. Comp. Fig. 14: Accuracy of bifurcation methods. Spearman’s rank correlation was calculated by
comparing the real time and the inferred pseudotime.

28


	Introduction
	Pseudotime inference
	Gaussian Process Regression
	Pseudotime inference by Bayesian GPLVM with per-cell prior
	Dimensionality reduction

	Bifurcation inference using overlapping mixtures of Gaussian processes
	Mixture model
	Parameter inference

	Downstream analysis
	Ranking genes by bifurcation
	Inferring the bifurcation time point

	Limitations
	Implementation and combination with existing workflows
	Practical use of GPfates
	Integration of existing methods
	Software availability

	Assessment of GPfates on simulated and real data
	Sample-size robustness analysis
	Predicted bifurcation time is not biased by collection times
	Assessment of the ability to select the number of trends in OMGP
	Comparison of pseudotime inference with and without priors
	Pseudotime uncertainty
	Stability of the circular shape of the GPLVM representation
	Assessing the accuracy of imputing virtual cells

	Validating the BGPLVM and OMGP approach by application to other data sets
	Analysis of lung development data
	Analysis of human primordial germ cell data
	Analysis of frog development data

	Comparison to other pseudotime and bifurcation methods
	Preprocessing public RNA-seq data
	Wishbone
	Monocle
	Diffusion Pseudotime (DPT)
	SCUBA
	Mpath


	Discussion

